Here’s my quick take on large-scale solar and heat islands, having very quickly reviewed the literature below:
Bottom line: temperatures do rise immediately above and adjacent to solar farms, but decrease under the panels. Vegetation mitigates these effects. The temperature increases also dissipate rapidly as you move away from the panels.
Solar farms do not contribute to global warming, even if there were thousands of them.
Heat island effects are a major–and legitimate–concern of community-members and people (and plants and animals) living near solar farms.
Here’s a bibliography (and links) of studies examining this:
- Armstrong, A., Ostle, N. J., & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11(7), 074016.
- Barron-Gafford, G. A., Minor, R. L., Allen, N. A., Cronin, A. D., Brooks, A. E., & Pavao-Zuckerman, M. A. (2016). The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Scientific Reports, 6(1), 35070. https://doi.org/10.1038/srep35070
- Broadbent, A. M., Krayenhoff, E. S., Georgescu, M., & Sailor, D. J. (2019). The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance. Journal of Applied Meteorology and Climatology, 58(5), 989–1006. https://doi.org/10.1175/JAMC-D-18-0271.1
- Chang, R., Shen, Y., Luo, Y., Wang, B., Yang, Z., & Guo, P. (2018). Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China. Renewable Energy, 118, 131–137. https://doi.org/10.1016/j.renene.2017.11.007
- E. Demirezen, T. Ozden, & B. G. Akinoglu. (2018). Impacts of a Photovoltaic Power Plant for Possible Heat Island Effect. 2018 International Conference on Photovoltaic Science and Technologies (PVCon), 1–7. https://doi.org/10.1109/PVCon.2018.8523937
- Fthenakis, V., & Yu, Y. (2013). Analysis of the potential for a heat island effect in large solar farms. 3362–3366.
- Guoqing, L., Hernandez, R. R., Blackburn, G. A., Davies, G., Hunt, M., Whyatt, J. D., & Armstrong, A. (2021). Ground-mounted photovoltaic solar parks promote land surface cool islands in arid ecosystems. Renewable and Sustainable Energy Transition, 1, 100008. https://doi.org/10.1016/j.rset.2021.100008
- Hu, A., Levis, S., Meehl, G. A., Han, W., Washington, W. M., Oleson, K. W., van Ruijven, B. J., He, M., & Strand, W. G. (2016). Impact of solar panels on global climate. Nature Climate Change, 6(3), 290–294. https://doi.org/10.1038/nclimate2843
- Jiang, J., Gao, X., Lv, Q., Li, Z., & Li, P. (2021). Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas. Renewable Energy, 174, 157–169. https://doi.org/10.1016/j.renene.2021.03.148
- Makaronidou, M. (2020). Assessment on the Local Climate Effects of Solar Photovoltaic Parks [Ph.D., Lancaster University (United Kingdom)]. In PQDT – Global (2460767216). ProQuest Dissertations & Theses Global; ProQuest Dissertations & Theses Global Closed Collection. https://ezproxy.msu.edu/login?url=https://www.proquest.com/dissertations-theses/assessment-on-local-climate-effects-solar/docview/2460767216/se-2?accountid=12598
- Masson, V., Bonhomme, M., Salagnac, J.-L., Briottet, X., & Lemonsu, A. (2014). Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science, 2. https://doi.org/10.3389/fenvs.2014.00014
- Nguyen, K. C., Katzfey, J. J., Riedl, J., & Troccoli, A. (2017). Potential impacts of solar arrays on regional climate and on array efficiency. International Journal of Climatology, 37(11), 4053–4064.
- Nixon, B. (n.d.). The Potential Micro Climate Impacts of Large-Scale Solar Farms – Implications for Planning and Approvals. https://assets.cleanenergycouncil.org.au/documents/events/event-docs-2019/SIF-2019/Presentations/03-Bronte-Nixon.pdf
- Sailor, D. J., Anand, J., & King, R. R. (2021). Photovoltaics in the built environment: A critical review. Energy and Buildings, 253, 111479. https://doi.org/10.1016/j.enbuild.2021.111479
- Smith, S. E., Viggiano, B., Ali, N., Silverman, T. J., Obligado, M., Calaf, M., & Cal, R. B. (2022). Increased panel height enhances cooling for photovoltaic solar farms. Applied Energy, 325, 119819. https://doi.org/10.1016/j.apenergy.2022.119819
- Wu, W., Yue, S., Zhou, X., Guo, M., Wang, J., Ren, L., & Yuan, B. (2020). Observational Study on the Impact of Large-Scale Photovoltaic Development in Deserts on Local Air Temperature and Humidity. Sustainability, 12(8). https://doi.org/10.3390/su12083403
- Xu, Z., Li, Y., Qin, Y., & Bach, E. (2024). A global assessment of the effects of solar farms on albedo, vegetation, and land surface temperature using remote sensing. Solar Energy, 268, 112198. https://doi.org/10.1016/j.solener.2023.112198
- Yang, L., Gao, X., Lv, F., Hui, X., Ma, L., & Hou, X. (2017). Study on the local climatic effects of large photovoltaic solar farms in desert areas. Solar Energy, 144, 244–253.
- Zhang, X., & Xu, M. (2020). Assessing the Effects of Photovoltaic Powerplants on Surface Temperature Using Remote Sensing Techniques. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111825
